Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
habitat_suitability_modeling_with_small_sample_size [2014/03/23 23:31]
britaldo
habitat_suitability_modeling_with_small_sample_size [2018/05/16 02:19] (current)
hermann [Resources]
Line 5: Line 5:
 ==== Abstract ==== ==== Abstract ====
  
-Spatial modeling is widely applied to map habitat suitability and species distribution thus enabling exploratory analysis of a species’ geographical distribution. Suitability models predict the likelihood of species occurrence based on the niche theory translated into a set of environmental variables that indicate the suitability for presence or absence of a species (Guisan & Zimmermann 2000;  Hirzel & Le Lay 2008). These tools are applied to map the ecological distribution of species based on a few presence records only and without records of absence (Pearson et al. 2007). Here we report the application of two modeling methods that produce suitability maps for Cotinga maculata (Cotingidae). The comparison of results indicate that the Maximum Entropy together with Weights of Evidence method presents satisfactory performance for cases with only few records of presence, based on the ROC analysis and Similarity comparison. The Weights of Evidence method available in Dinamica-EGO (Soares-Filho et al. 2013) performed on par with Maxent, thus offering an additional means to map habitat suitability. ​+Spatial modeling is widely applied to map habitat suitability and species distribution thus enabling exploratory analysis of a species’ geographical distribution. Suitability models predict the likelihood of species occurrence based on the niche theory translated into a set of environmental variables that indicate the suitability for presence or absence of a species (Guisan & Zimmermann 2000;  Hirzel & Le Lay 2008). These tools are applied to map the ecological distribution of species based on a few presence records only and without records of absence (Pearson et al. 2007). Here we report the application of two modeling methods that produce suitability maps for Cotinga maculata (Cotingidae). The comparison of results indicate that the Maximum Entropy together with the Weights of Evidence method presents satisfactory performance for cases with only few records of presence, based on the ROC analysis and Similarity ​Fuzzy comparison. The Weights of Evidence method available in Dinamica-EGO (Soares-Filho et al. 2013) performed on par with Maxent, thus offering an additional means to map habitat suitability. ​
  
 ==== Keywords ==== ==== Keywords ====
Line 14: Line 14:
 \\ \\
 \\ \\
-//Cotinga maculata is a species of the Order of Passariformes,​ Family Cotingidae. It is endemic to small remnants of the Brazilian Atlantic Forest between south of Bahia and Rio de Janeiro states. The species occurs in lowland rainforest, up to 200 meters, primary vegetation or in advanced regrowth stage. The species visit small forest patches searching for fruits that compose its staple food. Considered rare by experts, this species is difficult to observe due to long immobile and quiet perching periods. The few occurrence records available concentrate in conservation units in the south Bahia state and north of Espírito Santo state (MMA, 2008). In this study, we used 18 records from Conservation International Brazil database.+//Cotinga maculata// is a species of the Order of Passariformes,​ Family Cotingidae. It is endemic to small remnants of the Brazilian Atlantic Forest between south of Bahia and Rio de Janeiro states. The species occurs in lowland rainforest, up to 200 meters, primary vegetation or in advanced regrowth stage. The species visit small forest patches searching for fruits that compose its staple food. Considered rare by experts, this species is difficult to observe due to long immobile and quiet perching periods. The few occurrence records available concentrate in conservation units in the south Bahia state and north of Espírito Santo state (MMA, 2008). In this study, we used 18 records from Conservation International Brazil database.
  
 ==== Methods ==== ==== Methods ====
Line 23: Line 23:
 === Weights of evidence === === Weights of evidence ===
  
-The Weights of Evidence method consists of a Bayesian approach that calculates the influence of explanatory variables on the spatial prediction of a response variable (Bonham-Carter 1994, Soares-Filho et al. 2004). ​Here this approach employs categorical and binary explanatory variables to assess how attractive or repulsive these variables are to a species occurrence (response variable). Continuous variables must be categorized and each variable category is evaluated in terms of its association/​disassociation to the species occurrence. Calculation of Weights of Evidence is performed using the Dinamica EGO platform.+The Weights of Evidence method consists of a Bayesian approach that calculates the influence of explanatory variables on the spatial prediction of a response variable (Bonham-Carter 1994, Soares-Filho et al. 2004). ​This approach employs categorical and binary explanatory variables to assess how attractive or repulsive these variables are to a species occurrence (response variable). Continuous variables must be categorized and each variable category is evaluated in terms of its association/​disassociation to the species occurrence. Calculation of Weights of Evidence is performed using the Dinamica EGO platform.
 \\ \\
 \\ \\
-The explanatory variables selected initially were elevation, annual precipitation,​ maximum, minimum, and mean annual temperature,​ all obtained from WorldClim database (Hijmans et al. 2005). Raster grids of these variables were resampled to 1000×1000 meters. All variables and its intervals were evaluated for statistical significance. Same variables were used on both software: Maxent (for Maximum Entropy method) and Dinamica EGO (for Weights of Evidence method).+The explanatory variables selected initially were elevation, annual precipitation,​ maximum, minimum, and mean annual temperature,​ all obtained from WorldClim database (Hijmans et al. 2005). Raster grids of these variables were resampled to 1000×1000 meters. All variables and its intervals were evaluated for statistical significance. Same variables were used as input for both software: Maxent (for Maximum Entropy method) and Dinamica EGO (for Weights of Evidence method).
  
 === Suitability maps, similarity and disagreement === === Suitability maps, similarity and disagreement ===
  
-Figure 1 shows the suitability maps obtained from both methods. Areas with higher suitability match on both maps. The coastal area in the northeast of study area is the main region with high values of suitability. However, a substantial difference between the methods is the fact that the Maximum Entropy treats directly continuous variables, whereas the Weights of Evidence method categorizes ​all the continuous variables and treats each category as a binary secondary variable. Thus, the map produced by Weights of Evidence presents shades of gray that correspond to the categories ​created ​previously.+Figure 1 shows the suitability maps obtained from both methods. Areas with higher suitability match on both maps. The coastal area in the northeast of study area is the main region with high values of suitability. However, a substantial difference between the methods is the fact that the Maximum Entropy treats directly continuous variables, whereas the Weights of Evidence method categorizes continuous variables and treats each category as a binary secondary variable. Thus, the map produced by Weights of Evidence presents shades of gray that correspond to the ranges ​created ​in the categorization process.
 \\ \\
 \\ \\
Line 37: Line 37:
 \\ \\
 \\ \\
-One way to explore the concordance ​between different methods ​of building ​a suitability ​surface is generate congruence and divergence maps. Thereby it is possible observe ​spatially ​areas predicted ​suitable ​by both methods, areas predicted ​suitable ​exclusively by one method, and also the concordance by ranges of suitability. Furthermore,​ both maps can also be evaluated by the Dinamica EGO reciprocal similarity ​functor, as ilustrated by figure 2. This functor ​calculates a two-way fuzzy similarity index between ​two maps ([[calc_reciprocal_similarity_map|Calc Reciprocal Similarity Map]]).+Similarity and disagreement maps consist of one way to explore the matching ​between different methods ​for calculating ​a suitability ​map. Thereby it is possible ​to observe areas predicted by both methods, areas predicted exclusively by one method, and agreement of ranges of suitability. Furthermore,​ both maps can also be evaluated by using reciprocal similarity ​metric, as illustrated in figure 2. This method ​calculates a two-way fuzzy similarity index between ​a pair of maps  ([[calc_reciprocal_similarity_map|Calc Reciprocal Similarity Map]]).
 \\ \\
 \\ \\
-{{ :​images:​habitatmod_figure02congruence.png |Figure 02: Congruence ​and divergence ​maps comparing Maximum Entropy and Weights of Evidence methods + similarity index.}} +{{ :​images:​habitatmod_figure02congruence.png |Figure 02: Similarity ​and disagreement ​maps comparing Maximum Entropy and Weights of Evidence methods + similarity index.}} 
-{{ :​images:​habitatmod_figure02divergence.png |Figure 02: Congruence ​and divergence maps comparing Maximum Entropy and Weights of Evidence methods + similarity index.}} +{{ :​images:​habitatmod_figure02divergence.png |Figure 02: Similarity ​and disagreement ​comparing Maximum Entropy and Weights of Evidence methods + similarity index.}} 
-Figure 02: Congruence ​and divergence ​maps comparing Maximum Entropy and Weights of Evidence methods + similarity index.+Figure 02: Similarity ​and disagreement ​maps comparing Maximum Entropy and Weights of Evidence methods + similarity index.
 \\ \\
 \\ \\
 === ROC performance evaluation === === ROC performance evaluation ===
-The Receiver Operating Characteristic (ROC) is a method to evaluate image similarity considering a prefixed ​binary pattern. ROC ponders ​true positive ​rate and false positive ​rate through incremental binary ​classifications ​(Mas et. al, 2013a). ​Despite the method has been applied to many study fields, ​ROC is commonly used in GIS to evaluate predictions ​provided by modeling ​versus observed data. Thus this work uses ROC metrics to evaluate the performance of each method individually,​ as well as to compare predictions between the both methods.+The Receiver Operating Characteristic (ROC) evaluates map similarity considering a reference ​binary pattern. ROC compare the amount of true positive and false positive ​cells through ​an incremental binary ​classification ​(Mas et al. 2013a). ROC is commonly used in GIS to evaluate ​spatial ​predictions versus observed data. In this work, wee used ROC metrics to evaluate the performance of each method individually,​ as well as to compare predictions between the two methods.
 \\ \\
 \\ \\
Line 53: Line 53:
 \\ \\
 \\ \\
-The main ROC metrics used to evaluate the results ​were the area under curve (AUC) and the partial area under curve (pAUC). Figure 03 presents the standard ROC chart contrasting ​true positive ​rate and false positive ​rate. The red diagonal curve represents ​a low-skilled prediction, ie, a hypothetical model that predicts ​how much hits as much false alarms. The suitability maps are interpreted on ROC as predictions to be compared with the fixed diagonal. Each suitability ​map evaluated ​generates a new curve for the same chartAny superposition of the prediction in analysis ​over the fixed diagonal ​is interpreted as performance gain. The final gain offered by the prediction analyzed ​(relative to the suitability map) is summarized by the AUC measure. ​The same reading ​can be applied ​for a restricted range of hit rate or error rate, this partial measure is called pAUC, as illustrated in the figure 03.+The main ROC metrics used to evaluate the results ​are the area under curve (AUC) and the partial area under curve (pAUC). Figure 03 presents the standard ROC graph of true positive and false positive. The red diagonal curve represents a hypothetical model that predicts ​the same number of hits and false alarms. The suitability maps are interpreted on the ROC as prediction curves ​compared with the fixed diagonal. Each suitability ​evaluation ​generates a new curve on the graphCurves ​over the fixed diagonal ​represent models that perform better than random model. The final gain (relative to the suitability map) is summarized by the AUC measure. ​An equivalent metric ​can be applied ​to measure ​hit rate or error rate, this partial measure is called pAUC, as illustrated in the figure 03.
  
 ==== Results and Discussions ==== ==== Results and Discussions ====
-The suitability maps generated by maximum entropy ​and weights ​of evidence ​were compared ​by sampling ​due to allow a feasible analyses in terms of computational effort. The comparison ​process more costly ​took around ​15 hours to be concluded on a computer with 64 GB of memory RAM. There were executed 469 bootstraps, each one generating a curve based in binary classifications incremented by 10% (ie, 10 points to compose the ROC curve). The methods were compared considering all the area under curve (AUC), and also considering partial area under curve (pAUC).+The suitability maps generated by Maximum Entropy ​and Weights ​of Evidence ​were compared ​using sampling. The comparison ​procedure ​took about 15 hours to be concluded on a computer with 64 GB of memory RAM and 32 processorsThe procedure ​executed 469 bootstraps, each one generating a curve based in binary classifications incremented by 10% (i.e., 10 points to compose the ROC curve). The methods were compared considering all the area under curve (AUC), and considering partial area under curve (pAUC).
 \\ \\
 \\ \\
-The maximum entropy ​method ​has reached ​AUC 0.92, while the weights ​of evidence ​method ​has reached ​AUC = 0.81. The comparison between the methods through multiple sampling has generated a p-value ​0,030. The comparison ​restricted ​to high hit indices, ​conform ​suggested by Pearson (2007), resulted in a p-value = 0,045. To the partial area under curve comparison were used 50 bootstraps ​in order of computational ​limitations. The p-value of 0,030 obtained ​by comparison between both methods ​points ​a statistical correlation between both projections. This fact indicates ​that weights ​of evidence ​method ​has enough skill for habitat suitability ​modeling, even in cases of small size samples. ​Being the maximum entropy ​a method considered ​high skilled ​for these cases.+The Maximum Entropy ​method AUC amounted to 0.92, while the Weights ​of Evidence ​method reached 0.81. The comparison between the methods through multiple sampling has generated a p-value ​of 0.030. The comparison ​constrained ​to high hit indices, ​as suggested by Pearson (2007), resulted in a p-value = 0.045. The comparison of partial area under curve used 50 bootstraps ​due to computational ​time required. The p-value of 0.030 obtained ​from comparing the two methods ​indicates ​a statistical correlation between both predictions. This result shows that Weights ​of Evidence ​method ​performs well for modeling ​habitat suitability,​ even in cases of small size samples. ​Such performance is compatible with the one of the Maximum Entropy, ​a method considered ​highly suitable ​for these cases.
 \\ \\
 \\ \\
-{{ :​images:​habitatmod_figure04.png |Figure 04: ROC curve and p-value for AUC comparison between ​maximum entropy ​and weights ​of evidence.}} +{{ :​images:​habitatmod_figure04.png |Figure 04: ROC curve and p-value for AUC comparison between ​Maximum Entropy ​and Weights ​of Evidence.}} 
-Figure 04: ROC curve and p-value for AUC comparison between ​maximum entropy ​and weights ​of evidence.+Figure 04: ROC curve and p-value for AUC comparison between ​Maximum Entropy ​and Weights ​of Evidence.
 \\ \\
 \\ \\
-{{ :​images:​habitatmod_figure05.png |Figure 05: ROC curve and p-value for pAUC comparison between ​maximum entropy ​and weights ​of evidence.}} +{{ :​images:​habitatmod_figure05.png |Figure 05: ROC curve and p-value for pAUC comparison between ​Maximum Entropy ​and Weights ​of Evidence.}} 
-Figure 05: ROC curve and p-value for pAUC comparison between ​maximum entropy ​and weights ​of evidence.+Figure 05: ROC curve and p-value for pAUC comparison between ​Maximum Entropy ​and Weights ​of Evidence.
 \\ \\
 \\ \\
-Besides direct comparison, the suitability maps of both methods were normalized to 0:100 range and then compared ​by ROC. In this case the p-value was 0.117. ​Meanwhile this result was obtained ​by a less exhaustive analysis in reason of computational limitations: ​50 bootstraps and 10% of increment.+In addition, the suitability maps of both methods were normalized to 0:100 range and then compared ​using ROC. In this casethe p-value was 0.117. ​This result was obtained ​using 50 bootstraps and 10% of increment.
 \\ \\
 \\ \\
-Results ​show that performance ​of weights of evidence is enough close to maximum entropy one. Once the maximum entropy is recognized as appropriated approach to model habitat suitability in low sampling cases (Pearson et al., 2007), weights of evidence emerges as an alternative for such studies. Considering the availability of weights of evidence method in the spatially explicit environment Dinamica EGO, it turns up an alternative to the commercial software Maxent, the main framework used to apply maximum entropy methodStill it is important to note that both modeling methods could be improved by more sophisticated configurations ​(heuristic searching, knowledge-driven adjustments, ​etc.). In this work both methods were compared assuming only calibration direct by sampling.+In sum, our results ​show that Weights ​of Evidence performed on par with the Maximum EntropyIt is important to note that both modeling methods could be further ​improved by fine-tuning ​(heuristic searching, knowledge-driven adjustments ​in Maxent), more finer rangesor applying genetic algorithm in the case of Weights of Evidence.
  
 ==== References ==== ==== References ====
Line 91: Line 91:
 ==== Resources ==== ==== Resources ====
  
-The links below are relative to models and available datasets used in this article: 
  
-[[http://​www.csr.ufmg.br/​dinamica/downloads/models/​resources.zip|Available inputs, outputs ​and models]]+[[http://​www.csr.ufmg.br/​dinamica_utils/download/files/​resources.zip|Download models ​and datasets used in this example]]